Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
1.
J Orthop Surg Res ; 19(1): 257, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649946

RESUMO

BACKGROUND: The mechanotransduction mechanisms by which cells regulate tissue remodeling are not fully deciphered. Circular RNAs (circRNAs) are crucial to various physiological processes, including cell cycle, differentiation, and polarization. However, the effects of mechanical force on circRNAs and the role of circRNAs in the mechanobiology of differentiation and remodeling in stretched periodontal ligament stem cells (PDLSCs) remain unclear. This article aims to explore the osteogenic function of mechanically sensitive circular RNA protein kinase D3 (circPRKD3) and elucidate its underlying mechanotransduction mechanism. MATERIALS AND METHODS: PDLSCs were elongated with 8% stretch at 0.5 Hz for 24 h using the Flexcell® FX-6000™ Tension System. CircPRKD3 was knockdown or overexpressed with lentiviral constructs or plasmids. The downstream molecules of circPRKD3 were predicted by bioinformatics analysis. The osteogenic effect of related molecules was evaluated by quantitative real-time PCR (qRT-PCR) and western blot. RESULTS: Mechanical force enhanced the osteogenesis of PDLSCs and increased the expression of circPRKD3. Knockdown of circPRKD3 hindered PDLSCs from osteogenesis under mechanical force, while overexpression of circPRKD3 promoted the early osteogenesis process of PDLSCs. With bioinformatics analysis and multiple software predictions, we identified hsa-miR-6783-3p could act as the sponge of circPRKD3 to indirectly regulate osteogenic differentiation of mechanically stimulated PDLSCs. CONCLUSIONS: Our results first suggested that both circPRKD3 and hsa-miR-6783-3p could enhance osteogenesis of stretched PDLSCs. Furthermore, hsa-miR-6783-3p could sponge circPRKD3 to indirectly regulate RUNX2 during the periodontal tissue remodeling process in orthodontic treatment.


Assuntos
MicroRNAs , Osteogênese , Ligamento Periodontal , RNA Circular , Células-Tronco , Ligamento Periodontal/citologia , Osteogênese/genética , Osteogênese/fisiologia , Humanos , RNA Circular/genética , RNA Circular/fisiologia , MicroRNAs/genética , Células-Tronco/metabolismo , Células Cultivadas , Mecanotransdução Celular/fisiologia , Diferenciação Celular/genética , Estresse Mecânico , Proteínas Serina-Treonina Quinases/genética
2.
Angew Chem Int Ed Engl ; : e202400413, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38458987

RESUMO

High-precision viral detection at point of need with clinical samples plays a pivotal role in the diagnosis of infectious diseases and the control of a global pandemic. However, the complexity of clinical samples that often contain very low viral concentrations makes it a huge challenge to develop simple diagnostic devices that do not require any sample processing and yet are capable of meeting performance metrics such as very high sensitivity and specificity. Herein we describe a new single-pot and single-step electrochemical method that uses real-time kinetic profiling of the interaction between a high-affinity aptamer and an antigen on a viral surface. This method generates many data points per sample, which when combined with machine learning, can deliver highly accurate test results in a short testing time. We demonstrate this concept using both SARS-CoV-2 and Influenza A viruses as model viruses with specifically engineered high-affinity aptamers. Utilizing this technique to diagnose COVID-19 with 37 real human saliva samples results in a sensitivity and specificity of both 100 % (27 true negatives and 10 true positives, with 0 false negative and 0 false positive), which showcases the superb diagnostic precision of this method.

3.
Nat Cell Biol ; 26(3): 421-437, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38409327

RESUMO

Type 1 diabetes (T1D) is characterized by the destruction of pancreatic ß-cells. Several observations have renewed the interest in ß-cell RNA sensors and editors. Here, we report that N6-methyladenosine (m6A) is an adaptive ß-cell safeguard mechanism that controls the amplitude and duration of the antiviral innate immune response at T1D onset. m6A writer methyltransferase 3 (METTL3) levels increase drastically in ß-cells at T1D onset but rapidly decline with disease progression. m6A sequencing revealed the m6A hypermethylation of several key innate immune mediators, including OAS1, OAS2, OAS3 and ADAR1 in human islets and EndoC-ßH1 cells at T1D onset. METTL3 silencing enhanced 2'-5'-oligoadenylate synthetase levels by increasing its mRNA stability. Consistently, in vivo gene therapy to prolong Mettl3 overexpression specifically in ß-cells delayed diabetes progression in the non-obese diabetic mouse model of T1D. Mechanistically, the accumulation of reactive oxygen species blocked upregulation of METTL3 in response to cytokines, while physiological levels of nitric oxide enhanced METTL3 levels and activity. Furthermore, we report that the cysteines in position C276 and C326 in the zinc finger domains of the METTL3 protein are sensitive to S-nitrosylation and are important to the METTL3-mediated regulation of oligoadenylate synthase mRNA stability in human ß-cells. Collectively, we report that m6A regulates the innate immune response at the ß-cell level during the onset of T1D in humans.


Assuntos
Diabetes Mellitus Tipo 1 , Células Secretoras de Insulina , Animais , Humanos , Camundongos , Adenosina Desaminase/metabolismo , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/metabolismo , Imunidade Inata , Células Secretoras de Insulina/metabolismo , Metiltransferases/genética , Metiltransferases/metabolismo , Oxirredução
4.
Nat Cancer ; 5(1): 167-186, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38168935

RESUMO

Onco-fetal reprogramming of the tumor ecosystem induces fetal developmental signatures in the tumor microenvironment, leading to immunosuppressive features. Here, we employed single-cell RNA sequencing, spatial transcriptomics and bulk RNA sequencing to delineate specific cell subsets involved in hepatocellular carcinoma (HCC) relapse and response to immunotherapy. We identified POSTN+ extracellular matrix cancer-associated fibroblasts (EM CAFs) as a prominent onco-fetal interacting hub, promoting tumor progression. Cell-cell communication and spatial transcriptomics analysis revealed crosstalk and co-localization of onco-fetal cells, including POSTN+ CAFs, FOLR2+ macrophages and PLVAP+ endothelial cells. Further analyses suggest an association between onco-fetal reprogramming and epithelial-mesenchymal transition (EMT), tumor cell proliferation and recruitment of Treg cells, ultimately influencing early relapse and response to immunotherapy. In summary, our study identifies POSTN+ CAFs as part of the HCC onco-fetal niche and highlights its potential influence in EMT, relapse and immunotherapy response, paving the way for the use of onco-fetal signatures for therapeutic stratification.


Assuntos
Carcinoma Hepatocelular , Receptor 2 de Folato , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/genética , Ecossistema , Células Endoteliais , Movimento Celular/genética , Doença Crônica , Recidiva , Imunoterapia , Microambiente Tumoral/genética
5.
Adv Healthc Mater ; : e2303762, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38047767

RESUMO

Surgical residual tumor lesions (R1 resection of surgical procedures (e.g., liver cancer infiltrating the diaphragm, surgical residual breast cancer, postoperative residual ovarian cancer) or boundary residual after ablation) and lymph node metastasis that cannot be surgically resected (retroperitoneal lymph nodes) significantly affect postoperative survival of tumor patients. This clinical conundrum poses three challenges for local drug delivery systems: stable and continuous delivery, good biocompatibility, and the ability to package new targeted drugs that can synergize with other treatments. Here, a drug-laden hydrogel generated from pure DNA strands and highly programmable in adjusting its mesh size is reported. Meanwhile, the DNA hydrogel can assist the microcrystallization of novel radiosensitizing drugs, ataxia telangiectasia and rad3-related protein (ATR) inhibitor (Elimusertib), further facilitating its long-term release. When applied to the tumor site, the hydrogel system demonstrates significant antitumor activity, minimized systemic toxicity, and has a modulatory effect on the tumor-immune cell interface. This drug-loaded DNA-hydrogel platform represents a novel modality for adjuvant therapy in patients with surgical residual tumor lesions and lymph node metastasis.

6.
Front Plant Sci ; 14: 1211162, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37719222

RESUMO

As a multifunctional tree species, Cyclocarya paliurus leaves are rich in bioactive substances with precious healthy values. To meet the huge requirement of C. paliurus leaf production, sites with some environmental stresses would be potential land for developing its plantations due to the limitation of land resources in China. Nitric oxide (NO) and hydrogen sulfide (H2S) are common gas messengers used to alleviate abiotic stress damage, whereas the mechanism of these messengers in regulating salt resistance of C. paliurus still remains unclear. We performed a comprehensive study to reveal the physiological response and molecular regulatory mechanism of C. paliurus seedlings to the application of exogenous NO and H2S under salt stress. The results showed that the application of sodium hydrosulfide (NaHS) and sodium nitroprusside (SNP) not only maintained the photosynthetic capacity and reduced the loss of leaf biomass, but also promoted endogenous NO synthesis and reduced oxidative damage by activating antioxidant enzyme activity and increasing the content of soluble protein and flavonoids. Moreover, transcriptome and metabolome analysis indicated the expression of genes encoding phenylalanine ammonia lyase (PAL), cytochromeP450 (CYP), chalcone synthase (CHS), dihydroflavonol 4-reductase (DFR) and flavonol synthase (FLS) in flavonoid biosynthesis pathway was all up-regulated by the application of NO and H2S. Meanwhile, 15 transcriptional factors (TFs) such as WRKY, ERF, bHLH and HY5 induced by NO were found to regulated the activities of several key enzymes in flavonoid biosynthesis pathway under salt stress, via the constructed co-expression network. Our findings revealed the underlying mechanism of NO and H2S to alleviate salt stress and regulate flavonoid biosynthesis, which provides a theoretical basis for establishing C. paliurus plantations in the salt stress areas.

7.
Int J Mol Sci ; 24(16)2023 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-37629133

RESUMO

Multigene cotransformation has been widely used in the study of genetic improvement in crops and trees. However, little is known about the unintended effects and causes of multigene cotransformation in poplars. To gain insight into the unintended effects of T-DNA integration during multigene cotransformation in field stands, here, three lines (A1-A3) of Populus × euramericana cv. Neva (PEN) carrying Cry1Ac-Cry3A-BADH genes and three lines (B1-B3) of PEN carrying Cry1Ac-Cry3A-NTHK1 genes were used as research objects, with non-transgenic PEN as the control. Experimental stands were established at three common gardens in three locations and next generation sequencing (NGS) was used to identify the insertion sites of exogenous genes in six transgenic lines. We compared the growth data of the transgenic and control lines for four consecutive years. The results demonstrated that the tree height and diameter at breast height (DBH) of transgenic lines were significantly lower than those of the control, and the adaptability of transgenic lines in different locations varied significantly. The genotype and the experimental environment showed an interaction effect. A total of seven insertion sites were detected in the six transgenic lines, with B3 having a double-site insertion and the other lines having single copies. There are four insertion sites in the gene region and three insertion sites in the intergenic region. Analysis of the bases near the insertion sites showed that AT content was higher than the average chromosome content in four of the seven insertion sites within 1000 bp. Transcriptome analysis suggested that the differential expression of genes related to plant hormone transduction and lignin synthesis might be responsible for the slow development of plant height and DBH in transgenic lines. This study provides an integrated analysis of the unintended effects of transgenic poplar, which will benefit the safety assessment and reasonable application of genetically modified trees.


Assuntos
Populus , Populus/genética , Metabolismo Secundário , Produtos Agrícolas , DNA Bacteriano , Árvores
8.
J Healthc Eng ; 2023: 8231073, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37457493

RESUMO

Wearing a mask greatly reduced the possibility of infection during the COVID-19 pandemic. However, major inconveniences occur regarding patients with upper limb amputations, as they cannot independently wear masks. As a result, bacterial contamination is caused by medical staff touching the quilt when helping. Furthermore, this effect can occur with ordinary people due to accidental touch. This research aims to design an automatic and portable face shield assistive device based on surface electromyography (sEMG) signals. A concise face shield-wearing mechanism was built through 3D printing. A novel decision-making control method regarding a feature extraction model of 16 signal features and a Softmax classification neural network model were developed and tested on an STM32 microcontroller unit (MCU). The optimized electrode was fabricated using a carbon nanotube (CNT)/polydimethylsiloxane (PDMS). The design was further integrated and tested, showing a promising future for further implementation.


Assuntos
COVID-19 , Humanos , Pandemias/prevenção & controle , Eletromiografia , Redes Neurais de Computação , Amputação Cirúrgica
9.
Cell Mol Biol Lett ; 28(1): 57, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37480044

RESUMO

BACKGROUND: The preference for glucose oxidative mode has crucial impacts on various physiological activities, including determining stem cell fate. External mechanical factors can play a decisive role in regulating critical metabolic enzymes and pathways of stem cells. Periodontal ligament stem cells (PDLSCs) are momentous effector cells that transform mechanical force into biological signals during the reconstruction of alveolar bone. However, mechanical stimuli-induced alteration of oxidative characteristics in PDLSCs and the underlying mechanisms have not been fully elucidated. METHODS: Herein, we examined the expression of LDH and COX4 by qRT-PCR, western blot, immunohistochemistry and immunofluorescence. We detected metabolites of lactic acid and reactive oxygen species for functional tests. We used tetramethylrhodamine methyl ester (TMRM) staining and a transmission electron microscope to clarify the mitochondrial status. After using western blot and immunofluorescence to clarify the change of DRP1, we further examined MFF, PINK1, and PARKIN by western blot. We used cyclosporin A (CsA) to confirm the regulation of mitophagy and ceased the stretching as a rescue experiment. RESULTS: Herein, we ascertained that mechanical force could increase the level of LDH and decrease the expression of COX4 in PDLSCs. Simultaneously, the yield of reactive oxygen species (ROS) in PDLSC reduced after stretching, while lactate acid augmented significantly. Furthermore, mitochondrial function in PDLSCs was negatively affected by impaired mitochondrial membrane potential (MMP) under mechanical force, and the augment of mitochondrial fission further induced PRKN-dependent mitophagy, which was confirmed by the rescue experiments via blocking mitophagy. As a reversible physiological stimulation, the anaerobic preference of PDLSCs altered by mechanical force could restore after the cessation of force stimulation. CONCLUSIONS: Altogether, our study demonstrates that PDLSCs under mechanical force preferred anaerobic oxidation induced by the affected mitochondrial dynamics, especially mitophagy. Our findings support an association between mechanical stimulation and the oxidative profile of stem cells, which may shed light on the mechanical guidance of stem cell maintenance and commitment, and lay a molecular foundation for periodontal tissue regeneration.


Assuntos
Mitofagia , Ligamento Periodontal , Anaerobiose , Espécies Reativas de Oxigênio , Oxirredução
10.
Natl Sci Rev ; 10(5): nwac034, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37265505

RESUMO

The onset of various kidney diseases has been reported after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination. However, detailed clinical and pathological features are lacking. We screened and analyzed patients with newly diagnosed kidney diseases after inactivated SARS-CoV-2 vaccination in Peking University First Hospital from January 2021 to August 2021, and compared them with the reported cases in the literature. We obtained samples of blood, urine and renal biopsy tissues. Clinical and laboratory information, as well as light microscopy, immunostaining and ultrastructural observations, were described. The SARS-CoV-2 spike protein and nucleoprotein were stained using the immunofluorescence technique in the kidney biopsy samples. SARS-CoV-2 specific antibodies were tested using magnetic particle chemiluminescence immunoassay. The study group included 17 patients with a range of conditions including immune-complex-mediated kidney diseases (IgA nephropathy, membranous nephropathy and lupus nephritis), podocytopathy (minimal change disease and focal segmental glomerulosclerosis) and others (antineutrophil-cytoplasmic-antibody-associated vasculitis, anti-glomerular basement membrane nephritis, acute tubulointerstitial nephritis and thrombotic microangiopathy). Seven patients (41.18%) developed renal disease after the first dose and ten (58.82%) after the second dose. The kidney disease spectrum as well as clinicopathological features are similar across different types of SARS-CoV-2 vaccines. We found no definitive evidence of SARS-CoV-2 spike protein or nucleoprotein deposition in the kidney biopsy samples. Seropositive markers implicated abnormal immune responses in predisposed individuals. Treatment and follow-up (median = 86 days) showed that biopsy diagnosis informed treatment and prognosis in all patients. In conclusion, we observed various kidney diseases following SARS-CoV-2 vaccine administration, which show a high consistency across different types of SARS-CoV-2 vaccines. Our findings provide evidence against direct vaccine protein deposition as the major pathomechanism, but implicate abnormal immune responses in predisposed individuals. These findings expand our understanding of SARS-CoV-2 vaccine renal safety.

11.
Inflammation ; 46(5): 1849-1858, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37351818

RESUMO

Lipopolysaccharide (LPS) is regarded as the main pathogenic factor of periodontitis. Mesenchymal stem cell-derived small extracellular vesicles (sEVs) play a key role in a variety of physiological and pathological processes. This study investigated the effects of sEVs derived from periodontal ligament stem cells (PDLSCs) pretreated with LPS on macrophage polarization and the underlying mechanisms. PDLSCs were treated with LPS (1 µg/mL) for 24 h, and sEVs were harvested by gradient centrifugation method. Macrophages were incubated with sEVs for 24 h, followed by examination of the expression profiles of inflammatory and anti-inflammatory cytokines, and polarization markers. Furthermore, microarray analysis, western blot test, and microRNA inhibitor transfection experiments were used to elucidate the molecular signaling pathway responsible for the process. The results showed that sEVs derived from LPS-preconditioning PDLSCs could significantly increase the expression of M1 markers and inflammatory cytokines, whereas decreased the expression of M2 markers and anti-inflammatory cytokines. Mechanistic analysis showed that TLR2/TLR4/NF-κB p65 pathway was involved in M1 polarization of macrophages, and microRNA-433-3p played a role, at least in part, in the course. Collectively, LPS could promote the macrophages into M1 status via TLR2/TLR4/NF-κB p65 signaling pathway partly by sEV-mediated microRNA-433-3p, which could be a potential therapeutic target for periodontitis.


Assuntos
Vesículas Extracelulares , MicroRNAs , Periodontite , Humanos , NF-kappa B/metabolismo , Lipopolissacarídeos/farmacologia , Receptor 4 Toll-Like/metabolismo , Receptor 2 Toll-Like/metabolismo , Ligamento Periodontal/metabolismo , MicroRNAs/metabolismo , Citocinas/metabolismo , Macrófagos/metabolismo , Células-Tronco , Periodontite/metabolismo , Vesículas Extracelulares/metabolismo , Anti-Inflamatórios/farmacologia
12.
Phytomedicine ; 117: 154912, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37295023

RESUMO

BACKGROUND: Therapeutic approaches based on glycolysis and energy metabolism of tumor cells are new promising strategies for the treatment of cancer. Currently, researches on the inhibition of pyruvate kinase M2, a key rate limiting enzyme in glycolysis, have been corroborated as an effective cancer therapy. Alkannin is a potent pyruvate kinase M2 inhibitor. However, its non-selective cytotoxicity has affected its subsequent clinical application. Thus, it needs to be structurally modified to develop novel derivatives with high selectivity. PURPOSE: Our study aimed to ameliorate the toxicity of alkannin through structural modification and elucidate the mechanism of the superior derivative 23 in lung cancer therapy. METHODS: On the basis of the principle of collocation, different amino acids and oxygen-containing heterocycles were introduced into the hydroxyl group of the alkannin side chain. We examined the cell viability of all derivatives on three tumor cells (HepG2, A549 and HCT116) and two normal cells (L02 and MDCK) by MTT assay. Besides, the effect of derivative 23 on the morphology of A549 cells as observed by Giemsa and DAPI staining, respectively. Flow cytometry was performed to assess the effects of derivative 23 on apoptosis and cell cycle arrest. To further assess the effect of derivative 23 on the Pyruvate kinase M2 in glycolysis, an enzyme activity assay and western blot assay were performed. Finally, in vivo the antitumor activity and safety of the derivative 23 were evaluated by using Lewis mouse lung cancer xenograft model. RESULTS: Twenty-three novel alkannin derivatives were designed and synthesized to improve the cytotoxicity selectivity. Among these derivatives, derivative 23 showed the highest cytotoxicity selectivity between cancer and normal cells. The anti-proliferative activity of derivative 23 on A549 cells (IC50 = 1.67 ± 0.34 µM) was 10-fold higher than L02 cells (IC50 = 16.77 ± 1.44 µM) and 5-fold higher than MDCK cells (IC50 = 9.23 ± 0.29 µM) respectively. Subsequently, fluorescent staining and flow cytometric analysis showed that derivative 23 was able to induce apoptosis of A549 cells and arrest the cell cycle in the G0/G1 phase. In addition, the mechanistic studies suggested derivative 23 was an inhibitor of pyruvate kinase; it could regulate glycolysis by inhibiting the activation of the phosphorylation of PKM2/STAT3 signaling pathway. Furthermore, studies in vivo demonstrated derivative 23 significantly inhibited the growth of xenograft tumor. CONCLUSION: In this study, alkannin selectivity is reported to be significantly improved following structural modification, and derivative 23 is first shown to be able to inhibit lung cancer growth via the PKM2/STAT3 phosphorylation signaling pathway in vitro, indicating the potential value of derivative 23 in treating lung cancer.


Assuntos
Antineoplásicos , Neoplasias Pulmonares , Naftoquinonas , Humanos , Camundongos , Animais , Piruvato Quinase/metabolismo , Linhagem Celular Tumoral , Naftoquinonas/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Apoptose , Proliferação de Células , Antineoplásicos/farmacologia , Antineoplásicos/química
13.
Diagn Microbiol Infect Dis ; 106(4): 115929, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37244008

RESUMO

OBJECTIVES: We developed a rapid and highly sensitive method for quantitatively analyzing neutrophil gelatinase-associated lipocalin (NGAL) levels in synovial fluid and assessed its diagnostic performance for prosthetic joint infection (PJI). DESIGNS OR METHODS: We conducted a preliminary analysis of the performance of the developed test strips utilizing clinical specimens to verify their sensitivity, precision, specificity and accuracy. RESULTS: The standard curve of the test strip NGAL values was linear. The detection limit and the limit of quantification (LOQ) were 12.37 and 29.49 ng/mL, respectively, and the approximate detection range was 12.37 to 1250 ng/mL. The interbatch and intrabatch precision of the test strips were each less than 10%, and the cross-reaction rate with competitors' systems was less than 1%. CONCLUSIONS: The test strips can be used for the determination of synovial fluid NGAL levels; the test strips are highly sensitive, precise, specific, and stable. Furthermore, they demonstrated good performance in clinical verification.


Assuntos
Testes Imunológicos , Líquido Sinovial , Humanos , Lipocalina-2/análise , Biomarcadores/análise
14.
Med ; 4(7): 404-431, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37244257

RESUMO

Solid organ transplant (SOT) recipients require meticulously tailored immunosuppressive regimens to minimize graft loss and mortality. Traditional approaches focus on inhibiting effector T cells, while the intricate and dynamic immune responses mediated by other components remain unsolved. Emerging advances in synthetic biology and material science have provided novel treatment modalities with increased diversity and precision to the transplantation community. This review investigates the active interface between these two fields, highlights how living and non-living structures can be engineered and integrated for immunomodulation, and discusses their potential application in addressing the challenges in SOT clinical practice.


Assuntos
Transplante de Órgãos , Transplantes , Materiais Biocompatíveis/uso terapêutico , Biologia Sintética , Imunossupressores/uso terapêutico
15.
Heliyon ; 9(4): e15305, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37101626

RESUMO

How to reduce the damage caused by myocardial ischemia-reperfusion (IR) in a timely manner to save patients' lives is still a great clinical challenge. Although dexmedetomidine (DEX) has been reported to protect the myocardium, the regulatory mechanism of gene translation responding to IR injury and DEX protection is poorly understood. In this study, IR rat model with DEX and the antagonist yohimbine (YOH) pretreatment were established, and RNA sequencing was carried out to seek the important regulators in differential expressed genes. A series of cytokines and chemokine as well as eukaryotic translation elongation factor 1 alpha 2 (EEF1A2) were induced by IR compared to control and compromised by DEX pretreatment compared to IR, then reversed by YOH. Immunoprecipitation was conducted to identify that peroxiredoxin 1 (PRDX1) interacted with EEF1A2 and contributed to the recruitment of EEF1A2 on mRNA molecules of cytokines and chemokine. Knockdown of PRDX1 could weaken the enhancive effect of EEF1A2 for gene translation of IL6, CXCL2 and CXCL11 under the IR condition, and indeed reduce cell apoptosis of cardiomyocytes. We also determined that the RNA motif "USCAGDCU" at 5' UTR could be particularly recognized by PRDX1. Destruction of this motif at the 5' UTR of IL6, CXCL2 and CXCL11 by CRISPR-CAS9 could result in the loss occupancies of EEF1A2 and PRDX1 on the mRNA of these three genes. Our observations showed the importance of PRDX1 in the reasonable control of cytokine and chemokine expression to prevent excessive inflammatory response to cell damage.

16.
Foods ; 12(7)2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37048374

RESUMO

The preparation of novel antioxidant peptides from food raw materials is one of the research focuses, but there are fewer studies on the preparation of antioxidant peptides from walnut meal, a by-product of processing walnuts. This study analyzed the antioxidant properties and protective effects of walnut protein hydrolyzed by alkaline protease and trypsin on the oxidative stress of HT22 cells. The peptides were identified by UPLC-MS/MS, and the anti-oxidative peptides were screened based on virtual computer tools. The potential anti-oxidative stress mechanism of the walnut polypeptide on HT22 cells was explored by molecular docking. The results revealed that walnut protein hydrolysates (WPH) with molecular weights of less than 1 kDa had good antioxidant properties and inhibited oxidative damage of HT22 cells by regulating the levels of reactive oxygen species (ROS) and antioxidant enzyme catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px). Six of the ninety identified new peptides showed good solubility, non-toxicity, and bioactivity. The molecular docking results showed that the six peptides could dock with Keap1 successfully, and EYWNR and FQLPR (single-letter forms of peptide writing) could interact with the binding site of Nrf2 in the Keap1-Kelch structural domain through hydrogen bonds with strong binding forces. The results of this study provided important information on the antioxidant molecular mechanism of the walnut polypeptide and provided a basis for further development of walnut antioxidant polypeptide products.

17.
ACS Sens ; 8(4): 1558-1567, 2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-36926840

RESUMO

Wastewater analysis of pathogens, particularly SARS-CoV-2, is instrumental in tracking and monitoring infectious diseases in a population. This method can be used to generate early warnings regarding the onset of an infectious disease and predict the associated infection trends. Currently, wastewater analysis of SARS-CoV-2 is almost exclusively performed using polymerase chain reaction for the amplification-based detection of viral RNA at centralized laboratories. Despite the development of several biosensing technologies offering point-of-care solutions for analyzing SARS-CoV-2 in clinical samples, these remain elusive for wastewater analysis due to the low levels of the virus and the interference caused by the wastewater matrix. Herein, we integrate an aptamer-based electrochemical chip with a filtration, purification, and extraction (FPE) system for developing an alternate in-field solution for wastewater analysis. The sensing chip employs a dimeric aptamer, which is universally applicable to the wild-type, alpha, delta, and omicron variants of SARS-CoV-2. We demonstrate that the aptamer is stable in the wastewater matrix (diluted to 50%) and its binding affinity is not significantly impacted. The sensing chip demonstrates a limit of detection of 1000 copies/L (1 copy/mL), enabled by the amplification provided by the FPE system. This allows the integrated system to detect trace amounts of the virus in native wastewater and categorize the amount of contamination into trace (<10 copies/mL), medium (10-1000 copies/mL), or high (>1000 copies/mL) levels, providing a viable wastewater analysis solution for in-field use.


Assuntos
COVID-19 , Purificação da Água , Humanos , COVID-19/diagnóstico , SARS-CoV-2/genética , Águas Residuárias , Oligonucleotídeos
18.
Front Plant Sci ; 14: 1117246, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36968403

RESUMO

As a highly valued and multiple function tree species, the leaves of Cyclocarya paliurus are enriched in diverse bioactive substances with healthy function. To meet the requirement for its leaf production and medical use, the land with salt stress would be a potential resource for developing C. paliurus plantations due to the limitation of land resources in China. The basic helix-loop-helix (bHLH) transcription factor protein family, the second largest protein family in plants, has been found to play essential roles in the response to multiple abiotic stresses, especially salt stress. However, the bHLH gene family in C.paliurus has not been investigated. In this study, 159 CpbHLH genes were successfully identified from the whole-genome sequence data, and were classified into 26 subfamilies. Meanwhile, the 159 members were also analyzed from the aspects of protein sequences alignment, evolution, motif prediction, promoter cis-acting elements analysis and DNA binding ability. Based on transcriptome profiling under a hydroponic experiment with four salt concentrations (0%, 0.15%, 0.3%, and 0.45% NaCl), 9 significantly up- or down-regulated genes were screened, while 3 genes associated with salt response were selected in term of the GO annotation results. Totally 12 candidate genes were selected in response to salt stress. Moreover, based on expression analysis of the 12 candidate genes sampled from a pot experiment with three salt concentrations (0%, 0.2% and 0.4% NaCl), CpbHLH36/68/146 were further verified to be involved in the regulation of salt tolerance genes, which is also confirmed by protein interaction network analysis. This study was the first analysis of the transcription factor family at the genome-wide level of C. paliurus, and our findings would not only provide insight into the function of the CpbHLH gene family members involved in salt stress but also drive progress in genetic improvement for the salt tolerance of C. paliurus.

19.
Diabetes Res Clin Pract ; 198: 110607, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36878322

RESUMO

AIMS: N6-methyladenosine (m6A) in mRNA is involved in glucose metabolism. Our goal is to investigate the relationship of glucose metabolism, m6A and YTH domain-containing protein 1 (YTHDC1), a binding protein to m6A, in the development of type 2 diabetes (T2D). METHODS: HPLC-MS/MS and qRT-PCR were used to quantify m6A and YTHDC1 levels in white blood cells from patients with T2D and healthy individuals. MIP-CreERT and tamoxifen treatment were used to create ß-cell Ythdc1 knockout mice (ßKO). m6A sequencing and RNA sequencing were performed in wildtype/ßKO islets and MIN6 cells to identify the differential genes. RESULTS: In T2D patients, both of m6A and YTHDC1 levels were reduced and associated with fasting glucose. Deletion of Ythdc1 resulted in glucose intolerance and diabetes due to decreased insulin secretion, even though ß-cell mass in ßKO mice was comparable to wildtype mice. Moreover, Ythdc1 was shown to bind to SRSF3 (serine/arginine-rich splicing factor 3) and CPSF6 (cleavage and polyadenylation specific factor 6) in ß-cells. CONCLUSIONS: Our data suggested that YTHDC1 may regulate mRNA splicing and export by interacting with SRSF3 and CPSF6 to modulate glucose metabolism via regulating insulin secretion, implying YTHDC1 might be a novel potential target for lowing glucose.


Assuntos
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Humanos , Camundongos , Animais , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Espectrometria de Massas em Tandem , Glucose/metabolismo , Células Secretoras de Insulina/metabolismo , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Fatores de Processamento de Serina-Arginina/metabolismo
20.
bioRxiv ; 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36824909

RESUMO

Type 1 Diabetes (T1D) is characterized by autoimmune-mediated destruction of insulin-producing ß-cells. Several observations have renewed interest in the innate immune system as an initiator of the disease process against ß-cells. Here, we show that N 6 -Methyladenosine (m 6 A) is an adaptive ß-cell safeguard mechanism that accelerates mRNA decay of the 2'-5'-oligoadenylate synthetase (OAS) genes to control the antiviral innate immune response at T1D onset. m 6 A writer methyltransferase 3 (METTL3) levels increase drastically in human and mouse ß-cells at T1D onset but rapidly decline with disease progression. Treatment of human islets and EndoC-ßH1 cells with pro-inflammatory cytokines interleukin-1 ß and interferon α mimicked the METTL3 upregulation seen at T1D onset. Furthermore, m 6 A-sequencing revealed the m 6 A hypermethylation of several key innate immune mediators including OAS1, OAS2, and OAS3 in human islets and EndoC-ßH1 cells challenged with cytokines. METTL3 silencing in human pseudoislets or EndoC-ßH1 cells enhanced OAS levels by increasing its mRNA stability upon cytokine challenge. Consistently, in vivo gene therapy, to prolong Mettl3 overexpression specifically in ß-cells, delayed diabetes progression in the non-obese diabetic (NOD) mouse model of T1D by limiting the upregulation of Oas pointing to potential therapeutic relevance. Mechanistically, the accumulation of reactive oxygen species blocked METTL3 upregulation in response to cytokines, while physiological levels of nitric oxide promoted its expression in human islets. Furthermore, for the first time to our knowledge, we show that the cysteines in position C276 and C326 in the zinc finger domain of the METTL3 protein are sensitive to S-nitrosylation (SNO) and are significant for the METTL3 mediated regulation of OAS mRNA stability in human ß-cells in response to cytokines. Collectively, we report that m 6 A regulates human and mouse ß-cells to control the innate immune response during the onset of T1D and propose targeting METTL3 to prevent ß-cell death in T1D.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...